Technical Documentation
jua.weather.Model
class jua.weather.Model(client: jua.client.JuaClient, model: jua.weather.models.Models)
Examples
>>> from jua import JuaClient
>>> from jua.weather import Models, Variables
>>> from jua.types.geo import LatLon
>>>
>>> client = JuaClient()
>>> model = client.weather.get_model(Models.EPT2)
>>>
>>> # access a 5-day forecast for all of europe from the model:
>>> data = model.get_forecasts(
... init_time=datetime(2024, 8, 5, 0),
... latitude=slice(72, 36),
... longitude=slice(-15, 35),
... max_lead_time=5 * 24,
... variables=[Variables.AIR_TEMPERATURE_AT_HEIGHT_LEVEL_2M],
... )
>>>
>>> # Get latest forecast for specific points
>>> zurich = LatLon(lat=47.3769, lon=8.5417)
>>> london = LatLon(lat=51.5074, lon=-0.1278)
>>> forecast = model.get_forecasts(
... init_time="latest",
... points=[zurich, london],
... variables=[Variables.AIR_TEMPERATURE_AT_HEIGHT_LEVEL_2M]
... )def get_metadata() -> ModelMetadata:
Examples
get_latest_init_time(min_prediction_timedelta: int = 0) → LatestForecastInfo
Examples
is_ready( forecasted_hours: int, init_time: datetime.datetime | str = 'latest' &#xNAN;) → bool
Examples
get_forecast( init_time: "latest" | datetime | list[datetime] | slice | None = None, variables: list[Variables] | list[str] | None = None, prediction_timedelta: PredictionTimeDelta | None = None, latitude: SpatialSelection | None = None, longitude: SpatialSelection | None = None, points: list[LatLon] | LatLon | None = None, min_lead_time: int | None = None, max_lead_time: int | None = None, statistics: list[str] | list[Statistics] | None = None, method: "nearest" | "bilinear" = "nearest", stream: bool | None = None, print_progress: bool | None = None, &#xNAN;) → jua.weather.JuaDataset
Examples
Last updated