Regional Queries
Countries & Market Zones
Country
query = {
"models": ["ept2"],
"geo": {
"type": "country_key",
"value": "CH", # Switzerland
},
"variables": ["air_temperature_at_height_level_2m"],
"init_time": "latest",
"prediction_timedelta": [0, 24, 48], # 0, 1 day, 2 days
"order_by": [
"model",
"init_time",
"prediction_timedelta",
"latitude",
"longitude",
],
}
# Estimate cost before executing
cost_response = requests.post(cost_url, headers=headers, json=query)
cost_response.raise_for_status()
cost_info = cost_response.json()
print(f"Estimated cost: {cost_info['total_credits_needed']:.4f} credits")
print(f"Rows to return: {cost_info['total_rows_returned']}")
print(f"Rows to access: {cost_info['total_rows_accessed']}")
# Query parameters for arrow format and credit limit
params = {"format": "arrow", "request_credit_limit": 100}
response = requests.post(url, headers=headers, json=query, params=params)
response.raise_for_status()
# Read arrow format response
arrow_buffer = pa.py_buffer(response.content)
with pa_ipc.open_stream(arrow_buffer) as reader:
table = reader.read_all()
df = table.to_pandas()
print(f"✅ Retrieved {len(df)} rows for Switzerland")
print(df.head())Market Zone
Bounding Boxes
Polygons
Last updated